たかてつの成長日記

ごく普通の理系大学生がただひたすら自分の好きなことを書き留めるだけのブログです。教育系Youtuberを目指しています。大学では次世代バッテリーの1つであるカリウムイオン電池の研究開発をしています。

確率【鳥取大医学部】

どうもこんにちはたかてつです!

 

久しぶりの動画投稿となってしまいすみませんm(_ _)m

 

今回は鳥取大医学部の確率の問題を扱いました!

ポイントは「余りで場合分け」です。

 

倍数が絡む問題ではよく使うテクニックですので、

覚えておくと役に立つかと思います!是非ご覧ください!

 


【高校数学】数A 確率① 【鳥取大医学部】

 

 

 

本の読み方のまとめ

どうもこんにちはたかてつです!

 

今回は最新動画「本の読み方」の解説記事になります(あくまでも自分はこんな感じで読んでるよ!という紹介です)。

 

ジャンルによってかなり本の読み方も変わってくると思いますが、今回は特に、

 

「効率良く読む」

「使える知識に落とし込む」

 

この2つに重点を置いた読み方になります!

じっくり読み込むという感じではないのでその点はご了承下さいm(_ _)m

 

 

それでは、さっそく内容の方に移ります。とりあえず今回は「自己啓発本」と「参考書系の本」についてそれぞれまとめてみました↓

 

自己啓発本

①目次を読んで内容を予想する。

②1周目は1、2時間でさらっと読む(読むべき個所、読まなくてもいい箇所を判別)。

③その時、気になる箇所にマーカーやページを折るなどの目印をつけておく。

④1周目にマーカーをつけた前後の文章を2周目で集中して読む。

⑤その中でも特に大事だと思った箇所をスマホで端的にメモる(数式などが多い場合は紙媒体にメモでもOK。)。

 

参考書、教科書の読み方

①目次をよんでざっと内容をつかむ。

②とにかく書き込む。考え方、思いついたこと、数式、疑問等なんでもOK。

③ある程度考えてもわからないところは「?」などつけておいて先に進める。

④1周目を読み終えてある程度全体を把握している状況で2周目へ。細かい知識を埋めていくイメージで読む。

 

だいたいこんな感じです!

上述した各行動過程で自分が意識をしているポイントは2つ。

 

①読むべき箇所だけを読む

②インプットと同時にアウトプットもする

です。

 

まず①についてお話しします。

有名な話で、「筆者が本当に言いたいコアメッセージは1冊の中に全体の5~7%ほどしかない」というのがあります。他の部分はその5~7%をより詳しく説明したりだとか、あるいは筆者の体験談を肉付けしているだけの文章であることが多いです。

 

ですので、本をじっくり読む時間がない学生や社会人の方は、1周目でコアメッセージだけを拾うことを意識するといいと思います。そんな感じで1周目を終えると、その本が自分に合うか合わないかなんとなくわかります。

 

また、皆さん一度は経験があると思いますが、「面白そうで買ったけど後半はそうでもなかった」とか、あるいは、「レビューにつられて買ったけど自分には合わなかった」などなど。本ってかなり好みがはっきり出るものですよね。

 

勉強で例えると、自分の好きな先生に教えてもらった方が自然と内容が入ってくるあの感覚です。本も同じで、自分の好きな表現、構成の文章の方が自然と頭に入ってきます。そして好きな本はずっと記憶に残ります。

 

ですので、1周目はコアメッセージを拾いつつの、その本が自分の好みかそうでないかを判断する過程だと割り切って自分は読むようにしています。

 

そして、1周目で面白いと感じた本に関しては2周目、3周目で記憶に深く落とし込んでいきます。1周目で既にマーカーは引いているので、その周囲の文章を詳しく読んでいけばOKです。自分の経験上これだけでもだいぶ効率はupします。

 

ただ、いくら読むスピードを上げてもそれが全く記憶に残らなかったら本末転倒です。そこで、ポイント②の「アウトプットも同時にする」というのがかなり有効になってきます。

 

アウトプットの手段として自分が取り入れているのは、「とにかく書き込むこと」「スマホでメモをとること」です。

 

これまた有名な話なのですが、各行動に対する記憶の定着率を図式化したラーニングピラミッドというのがあります。ラーニングピラミッドによると、「読む」ことによる記憶の定着率はわずか10%ほどしかなく、一方で、「他の人に教える」ことによる定着率は90%にまで高まるそうです。確かに体感的にもそんな感じはしますよね。

 

ということで、自分は本を読んで「なるほど」と思っても、自分の記憶量なんかたかがしれてることを自覚しているのですぐにメモをとることにしています。そうすることで、「なんか聞いたことある」から「いつでも説明できる」レベルにまで記憶の水準を意識的に引き上げることができます。


ちなみに、なぜスマホでメモをとるのかということについては動画内で話しているので、興味のある方はご覧いただければと思います!

 

いろいろ話しましたが、自分の読み方が必ずしも皆さんに合うとは限りませんので、使えそうな所だけを参考にしていただけたらと思います!人生をより豊かにするためにも、本とは一生を通して仲良く付き合っていけたらいいですね(^_^)

 


【リクエスト動画】本の読み方について話します!

問題解決の戦略③~逆向きを考える~

どうもこんにちはたかてつです!

 

今日は先日upした動画「問題解決の戦略③~逆向きを考える~」の紹介です!

 

問題解決の戦略①②では簡単な問題で解説したのですが、今回は実際の入試レベルの問題で示したかったこともあり、"等式の証明"の問題を通して逆向きを考えることの大切さをお話ししました。

 

数学が苦手な人にとっては少し難しめな問題ですが、高1レベルの知識で十分理解することができる問題となっています。

 

一問の中に非常に多くのポイントが詰まっており、特にこれから受験勉強を本格的に始めていくという人にとって非常に良い勉強になるのではないかと思います!

 

是非活用してみてください!!


【問題解決の戦略10選】③~逆向きを考える~【良問】

 

最大最小問題の原則② 【東海大医学部】

どうもこんにちはたかてつです!

 

今回は先日upした最大最小問題の原則② 

東海大学医学部の問題の解説です!m(_ _)m

 

最大最小問題を解く際の順序として、

 

①平方完成してカッコの二乗の形を作る

②判別式の利用

微分→増減表→グラフ

④相加相乗平均の利用

⑤コーシーシュワルツの不等式の利用

 

この流れが基本となります。上から順に優先順位が高いです。

⑤は難関大でしか出題されないので余裕があれば覚えてもらえたらと思います。

 

今回の東海大学の問題で言えば、求めたいものが"分数形"で原則の①「カッコの二乗の形を作る」ことが困難だったため、原則の②「判別式の利用」にシフトしました。

 

計算自体は難しくないので、ポイントは「最初の一手を思いつけるかどうか」これにつきます。

 

そういう意味でも、ある程度ざっくり原則を覚えておくのは有効です。もし①~⑤以外の問題がきたらそれがインパクトとなり記憶にも定着しやすくなります。(例えば三角関数の分野における「合成の公式」や、領域の分野における「線形計画法」など)

 

最初は毎回原則を思い浮かべることになりますが、慣れれば問題を見た瞬間に思いつくようになるので是非練習してみてください!

 

 


【高校数学】数Ⅰ 第2回 最大最小問題② 【東海大医学部】

 

 

 

 

 

 

たかてつの成長日記 (ブログ4か月・YouTube3か月)

どうもこんにちはたかてつです!

 

今日11月29日は自分にとって1つの節目の日なので、久しぶりに成長日記を書いております!

 

2018年7月29日、自分の人生を変えることを決意し一歩踏み出してから今日でちょうど4か月が経ちました!!(初めてのブログ投稿から4か月)

 

また、YouTubeで初めての動画をupしてからちょうど3か月です。

 

更新ペースは多少ばらつきがあったものの、ここまで試行錯誤しながら楽しんで続けてくることができました!

 

社交辞令とかではなく、ここまで頑張れたのは応援してくれた皆さんのおかげです。本当にありがとうございますm(_ _)m

 

ちなみに9月30日の自分の記事がこちらになります↓

 

 

f:id:onepiece1056:20180930231551p:plain

 

総再生時間1847分(+519分)

 

チャンネル登録者数131人(+46人)

 

でした!!!

 

いざ数字を見てみると、着実に成長できているという実感が湧いてきます。

 

それと、総再生数が知らぬ間に1000回を突破していたのも驚きました!

本当にありがとうございます!!

 

チャンネル登録者数がじわじわ増えてきたのが嬉しい反面、

皆さんの貴重な時間を頂いているという自覚を持ち、

より質の高い動画を作っていかなければならないな~と感じております。

 

1秒でも長く見ていただけるように頑張ります。

今後ともたかてつちゃんねるをよろしくお願い致しますm(_ _)m

 

ちょうど総再生数が1000回を超えてきた時期でした!

単なる数字でしかないんだけれども、あの時は嬉しかったな~。

 

 

続きまして、11月29日現在の結果はこちらです↓

 

 

f:id:onepiece1056:20181128180355p:plain

 

 

f:id:onepiece1056:20181129103538p:plain

 

チャンネル登録者数350人(2か月で +219人)

総再生時間6758分(112時間)(2か月で +4911分)

総再生回数3206回 (2か月で +2153回)

 

ということで、YouTubeを始めて3か月、1つの目標だった総再生時間100時間の壁を超えることができました!!!素直に嬉しい!

 

継続したからといって必ずしも成功するとは限らないですが、「正しい場所で正しい方向で」継続し続ければ着実に成功へ近づいていくんだということをこの3か月で確信しました。あとは思考と修正を忘れないことですね。

 

まだまだ底辺YouTuberではありますが、少しずつ発信力がついてきている実感もあります。初心を忘れないためにも成長日記はちょいちょい公開していきますので、これからもたかてつちゃんねるを宜しくお願い致します!!m(_ _)m

 

 

 

問題解決の戦略10選~定期テストのためじゃなく自分のために~

どうもこんにちはたかてつです!

今回は、昨日upした「問題解決の戦略10選」の動画の紹介をさせてください!

 

先日、ツイッターで自分はこんなことをつぶやきました ↓

 

数学から学んだ問題解決の戦略10選

 

1. 論理的に推論する

2. パターンを認識する

3. 逆向きを考える

4. 視点を変える

5. 極端な場合を考える

6. 単純化する

7. データを整理する

8. 図で視覚的に表現する

9. 全ての可能性を網羅する

10. 知的に推測し検証する

 

テストがなくても数学は一生学び続けたい

 

めっちゃ恥ずかしいことを言っております。が、本音でもあります。

自分は数学を一生学びたいと本気で思っていますし、学びたいときに学べる今の時代に生まれたことをとても幸せに感じています(歴史を遡れば、数学に恐怖を感じた権力者が数学を学ぶことを法律で禁止していた時代もあります)。

 

なぜそこまで数学を学びたいかというと、単純に「生活が豊かになるから」です。同じもの、同じ景色、同じ形をみるにしても、数学を学んでいるとより深く感じることができる瞬間が多々あります。

 

数学が嫌いな人にとって数学は、"テストのために仕方なく勉強しなければならなかったもの" という立ち位置なのではないかと思います。

 

定期テストのためにひたすら公式を暗記して、定期テストを向かえる。そして次の日には全て忘れる。これの繰り返しだったのではないでしょうか。

 

これでは確かに数学に楽しさを感じることはできないですよね。公式はあくまでも「道具」でしかないですから、与えられた道具をなんとなく使ってる内はそれはただの作業ゲーです。

 

しかし、数学において重要なのは、なぜその道具を使うのかということです。どのような考え方からその道具を使おうと思えるのだろうか、別の道具をつかったらどうだろうか、あるいは、その道具をもっと発展させられないだろうか、別の道具と組み合わせることはできるだろうか、そもそもこの道具はどのような経緯で生まれたのだろうかなど、考えるべき要素は山ほどあることに気づきます。

 

これに気づいた瞬間、数学は神ゲーへと変貌します。紙面上でしかなかったはずのそのゲームは、紙面を飛び出し、現実世界を発展させることに繋がります。

たとえ話として今回はゲームという表現を使いましたが、もちろん実際にはそんな安っぽいものではありません。考えれば考えるほど数学が神秘的な学問であることを思い知らされます。

 

話は脱線しましたが、要は数学をテストのために覚えるだけじゃもったいないということです。自分の中で当初から大事にしている一貫したテーマとして、

 

「数学が苦手な人にでも理解してもらえるような授業」というのがあります。

 

というのも、数学が得意な人はこちらから促さずとも勝手に勉強していると思うからです。ですから、数学のある単元に苦手意識を抱いていたり、あるいは、そもそも数学があまり好きではない、得意になりたいけど考え方がわからないという方に向けてメッセージを送る気持ちで普段から動画を撮っているつもりです!

 

「わからない」が「わかる」に変わる瞬間というのはとても嬉しいですし、そのインパクトが記憶となり、一生使える自分の武器になります。そんな瞬間を1つでも2つでも多く届けたいという想いですし、そのために自分自身もっともっとレベルアップしなければならないと思っています!

 

自分の動画を通じて少しでも数学の楽しさに触れていただけたら嬉しいです!

 

 


【問題解決の戦略10選】②~パターンを認識する~

 


【問題解決の戦略10選】①~論理的に推論する~

 

これが本当の英才教育?~モンテッソーリ教育についてまとめてみた~

どうもこんにちはたかてつです!

突然ですが、自分は教育をもっと良いものにできないかな~という想いでYouTubeを始めました。

しかしいざ始めたのはいいもの、自分はまだまだ未熟な人間です。教育系YouTuber(自称)とか偉そうに言っていますが、教育免許をもっているわけでもありませんし、たかだか4年間アルバイトで塾講師を務めてきたという経験しかありません。

また、自分が目指す“教育”というのはいわゆるペーパーテストの点が上がればいいというものではなく、イメージとしては「一人ひとりが自分自身で考え、自分の夢に向かって頑張るためのサポートをすること」です。

この夢を実現するためには、自分自身教育について深く学ばないといけないと思っています。そのため、最近はより広義の“教育”について勉強し、考えているところです。

そんな中、今回は皆さんに知っていただきたい面白いキーワードを1つ見つけてきたので是非ご紹介させていただけたらと思います!もしかしたら将来皆さんが子育てをする際役に立つ内容があるかもしれません。

 

 

早速ですが、今回ご紹介したいキーワードは

モンテッソーリ教育というものです。

 

初めて聞いたという方もいらっしゃるのではないかと思いますので簡単に説明しますと、モンテッソーリ教育とは、1907年にイタリア最初の女性医師であるマリア・モンテッソーリによって開発され、最近アメリカでも注目されてきている教育法のことをいいます。

どれくらい注目を浴びているかというと、

「世の中はモンテッソーリ教育を受けて育った人々が動かしている」

と言われるほどです。

 

実際、モンテッソーリ教育で育った著名な成功者には以下のような方々がいらっしゃいます。

 

モンテッソーリ教育で育った成功者

ラリー・ペイジ、サーゲイ・ブリン(グーグルの創立者

・ジミー・ウェルズ(ウィキペディア創立者

・ジェフ・ベソス(アマゾンの創立者

ビル・ゲイツマイクロソフト創立者

・マック・ザッカ―バーグ(フェイスブック創立者

ピーター・ドラッカー(世界最高の経営思想家、マネジメントの発明者)

バラク・オバマアメリカ元大統領)

ヒラリー・クリントン

藤井聡太七段

 

そうそうたる顔ぶれに自分も最初は驚きました。

一体、モンテッソーリ教育とはどのような教育法なのか。具体的な内容の方を見ていきましょう。

 

 

モンテッソーリ教育とは

マリア・モンテッソーリが確立したモンテッソーリ教育。その教育法の最大の功績は、0歳から6歳の子供に「敏感期」というものを見出したことにあります。敏感期とは、子供が何かに強く興味を持って、集中して、同じことを何回も何回も繰り返す限定された時期のことを言います。

 

例えば、こんなシチュエーションを考えてみましよう。

 

子供がティッシュ箱からティッシュペーパーを何枚も何枚も引きずり出している。これを見たお母さんは、「こんな悪戯して!もったいないでしょ!」と言いながら、ティッシュ箱を取り上げ、手の届かない棚の上においてしまう。一方、子供は興味の対象を取り上げられて必死に泣いている。

 

よくみる光景ですよね。

 

実はこのような行動、面白いことにこの年代の子供なら国を問わず誰でもする行動なのだそうです。不思議ですよね。

 

このような一見意味がないようにも感じる子供の行動にも、実は成長に欠かせない重要な意味があるというのです。

 

モンテッソーリはこのような行動に対し、次のような結論を見出しています。

 

“この時期の子供は、手の手根骨という骨の発達によって、手の骨格が形成し、その出来上がった手を「使ってみたい」あるいは、「うまく使えるように何回も何回も練習したい」という強烈な衝動に駆られる「運動の敏感期」にある。そして、目と手が一緒に動くことによって、脳細胞が急激に活性化し、シナプスが急増するとても大切な瞬間である。”

 

つまり、このような子供の行動を単なるいたずらと判断してティッシュの取り上げてしまうのと、その行動の背景と重要性を理解して心ゆくまで行動させてあげるのとでは180度結果が違ってきてしまうのです。

 

また、敏感期にはほかにもいくつか種類があるといいます。

言語の敏感期、数の敏感期、文化の敏感期、感覚の敏感期などです。

 

例えば言語の敏感期について、私たちが世界でも難しい部類に入る日本語を何ら苦労なく覚えられたのは、0歳から6歳の言葉を話したくて話したくてしょうがない、また、文字を読みたくて読みたくてしょうがない「言語の敏感期」に日本語に多く触れてる機会があったからであり、中学校であんなに必死になって勉強した英語をなかなかしゃべれるようにならなかったのは、「言語の敏感期」を過ぎてしまったからだと言います。

 

また、数を数えたくてしょうがない、数字を読みたくてしょうがない「数の敏感期」に、例えばビーズやおはじきを子供に与えると、子供は時間を忘れて数え続けます。そして、ついには4桁の加減乗除すら楽しんで体得してしまうのです。

 

このように、本来子供はその神秘的にも思われる潜在的能力をもって生まれてきているのにも関わらず、実際は、大人がその能力を奪ってしまっているのです。モンテッソーリ教育では大人はあくまでも子供の援助者として徹することを主張しています。

 

具体的には以下のようなものです。

 

・子供自身が興味をもって活動を選べるような環境を整える

・子供の喜びを大人の代行で奪ってしまわないようにする

・子供の仕事を尊重する

・子供の間違いを直接的に訂正しない

・子供が助けを必要としているタイミングを逃さないように常に子供を観察する

 

自分がやった方が早いからと全てを大人がやってしまうのは、無意識のうちに子供の能力を奪っているのと同値であるかもしれません。ジミー・ウェルズやマック・ザッカ―バーグがウィキペディアフェイスブックという次元を超えた発想を生み出すことができたのは、もしかしたら子供の頃の身近な体験が土台になっていたのかもしれません。

 

日本ではまだまだ浸透していない教育法ですが、これから徐々に注目されてくるのではないかと個人的には思っています。家庭でも比較的簡単に実践できる方法ですので、もしよかったら頭の片隅にでも置いておいて下さい。

 

それでは今回はこの辺で終わりにしようかと思います!

また面白い話題を見つけたら共有しようと思うので、お楽しみに!

 

ためになったよ~という方いいねして頂けると励みになりますm(_ _)m